Guvendiren Lab

Instructive Biomaterials and Additive Manufacturing Laboratory (IBAM-Lab)

 

 

In Progress:

 

66. #Rodriguez N., #Abaci A., Truong H., Guner G., Young J. *Bilgili E., *Guvendiren M., Formulation of drug nanosuspension inks for direct ink writing of chewable tablets, to be submitted.

 

65. *Guvendiren M., Introduction to 3D printing: An integrated lecture-laboratory course, to be submitted.

 

63. #Gharacheh H., #Abaci A., Alkhoury K., Choudhury E., Liaw C-Y., Chester S.A., *Guvendiren M., Comparative evaluation of melt- vs. solution-printed poly(πœ€-caprolactone)/hydroxyapatite scaffolds for bone tissue engineering applications, submitted.

 

62. Truong H., Urcioli A., Abaci A., Gharacheh H., Liaw C-Y., *Guvendiren M., Hydrogel nanofibers for spatiotemporal control of stem cell fate within 3D printed scaffolds, to be submitted.

 

 

PUBLISHED

 

_____________________________________________________________________________________________________

2024 - 2023

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 

62. House A, Santillan A., Correa E., Youssef V., *Guvendiren M., Cellular alignment and matrix stiffening induced changes in human induced pluripotent stem cell derived cardiomyocytes, Advanced Healthcare Materials, 2024, in press  

 

61. Abaci A., *Guvendiren M., 3D Bioprinting of dense cellular structures within hydrogels with spatially controlled heterogeneity, Biofabrication, 2024, 16:035027.  

 

60. Yu S., Reddy O., Abaci A., Ai Y., Li Y., Chen H., Guvendiren M., Belfield K.D., Zhang Y., Novel BODIPY-based photobase generators for photoinduced polymerization, ACS Applied Materials & Interfaces, 2023, 15(38):45281-45289.  

 

59. Voronov R., Guvendiren M., Bioprinting the future, SLAS technology, 28(3): P101. 

 

58. Abaci A., *Camci-Unal G., *Guvendiren M., 3D bioprinting for medical applications, MRS Bulletin, 2023, 48(6):624-663. Abstract 

 

57. Gharacheh H., *Guvendiren M., 3D bioprinting vascularized bone tissue, MRS Bulletin, 2023, 48(6),668-675. Abstract

 

56. House A., Cornick J., Butt Q., *Guvendiren M., Elastomeric Platform with Surface Wrinkling Patterns to Control Cardiac Cell Alignment, Journal of Biomedical Materials Part A, 2023, 111(8): 1228-1242. Abstract - Highlighted as Front Cover

 

55. House A., Kuna A., Hastings D., Rodriguez N., Schoenitz M., Dreizin E., *Guvendiren M., Effect of Particle Shape on Rheology and Printability of Highly Filled Reactive Inks for Direct Ink Writing, Progress in Additive Manufacturing, 2023, (8), 1228-1242. Article

_____________________________________________________________________________________________________

2022

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

54. Buyukgoz G.G., Kossor C.G., Ji S., Guvendiren M.,  DavΓ© R.N., Dose titration of solid dosage forms via FDM 3D-printed mini-tablets, Pharmaceutics, 2022, 14(11), 2305. Article

 

53. Gharacheh H., *Guvendiren M., Composite hydrogel bioinks with bone allograft particles to enhance stem cell osteogenesis, Polymers, 2022, 14(18), 3788. Article

 

52. Tomer D., Arriagada C., Munshi S., Alexander B.E., French B., Vedula P., Caorsi V., House A., Guvendiren M., Kashina A., Schwarzbauer J., *Astrof S., A new mechanism of fibronectin fibril assembly revealed by live imaging and super-resolution microscopy, Journal of Cell Science, 2022, 135(16): jcs260120. Abstract

51. Menezes F.C., Siqueira N.M., Fung S., Scheibel J.M., Moura D.J., Guvendiren M., Kohn, *Soares R.M.D., Effect of crosslinking, hydroxyapatite addition, and fiber alignment to stimulate human mesenchymal stem cells osteoinduction in polycaprolactone‐based electrospun scaffolds, Polymers for Advanced Technologies, 2022, 33(9), 2682-2695. Abstract

 

50. Liaw C-Y., Pereyra J., Abaci A., Ji S., *Guvendiren M., 4D printing of surface morphing hydrogels, Advanced Materials Technologies, 2022, 7, 2101118. Abstract

 

49. *Rameshwar P., Savanur V.H., Etchegaray J-P., Guvendiren M, 3D bioprinting as a designer organoid to assess pathological processes in translational medicine, Journal of 3D Printing in Medicine, 2022, 6:1, 37-46. Article

 

_____________________________________________________________________________________________________

2021

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 

48. Liaw C-Y., Huynh S., Gedeon C., Ji S., D'souza C., Abaci A., *Guvendiren M., Airbrushed nanofibrous membranes to control stem cell infiltration in 3D printed scaffolds, AIChE Journal, 2021, e17475. Article

 

47. Liaw C-Y., Tolbert J.W., Chow L.W., *Guvendiren M., Interlayer bonding strength of 3D printed PEEK specimens, Soft Matter, 2021, 17, 4775-4789. Article

 

​

 

46. Ji. S., *Guvendiren M., Complex 3D bioprinting methods, APL Bioengineering, 2021, 5 (1), 011508. Article

 

​

 

45. Moore C.A., Siddiqui Z., Carney G.J., Naaldijk Y., Guiro K., Ferrer A.I., Sherman L.S.,  Guvendiren M., Kumar V., Rameshwar P., A 3D bioprinted material that recapitulates the perivascular bone marrow structure for sustained hematopoietic and cancer models, Polymers, 2021, 13(4), 480. Article

 

 

44. #Abaci A., #Gedeon C., Kuna A., *Guvendiren M., Additive manufacturing of oral tablets - printing technologies, materials and printed tablets, Pharmaceutics, 13(2), 156.  Article

 

 

43. House A., Atalla I., Lee E.J., *Guvendiren M., Designing biomaterial platforms for cardiac tissue and disease modeling, Advanced NanoBiomed Research, 2021, 1(1), 2000022. Article

 

​

 

42. Pountos I., Tellisi N., Darabi M.A., Erdem A., Mohamed T., Guvendiren M., Ashammakhi N., 3D Bioprinting, in Digital Surgery, Ed: Atallah S., 2021, Springer Nature Switzerland, 215-232. Link

 

 

​

 

_____________________________________________________________________________________________________

2020

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 

41. Abaci A., *Guvendiren M., Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting, Advanced Healthcare Materials, 2020, 2000734. Abstract

 

​

 

40. Serpooshan V., Guvendiren M., Editorial for the Special Issue on 3D Printing for Tissue Engineering and Regenerative Medicine, Micromachines, 2020,11(4), 366.

 

​

 

 

39. Ji S., Abaci A., Morrison T., Gramlich W.M., *Guvendiren M., Novel bioinks from UV-responsive norbornene-functionalized carboxymethyl cellulose macromers, Bioprinting, 2020, 18, e00083. Abstract

 

​

 

38. Ji S. and *Guvendiren M., 3D printed wavy scaffolds enhances stem cell osteogenesis, Micromachines, 2020, 11(1), 31. Article (Open Access)

 

 

​

 

 

_____________________________________________________________________________________________________

2019

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 

37. 3D Bioprinting in Medicine - Technologies, Bioinks and Applications, Guvendiren M. (Ed.), 2019, Springer International Publishing. Link

 

 

​

36. Ji S., Almeida E., *Guvendiren M., 3D bioprinting of complex channels within cell-laden hydrogels, Acta Biomaterialia, 2019, 95:214-224. Abstract

 

​

 

35. Liaw C-Y., Pereyra J., *Guvendiren M., Wrinkling on covalently-anchored hydrogels, in Wrinkled polymer surfaces: strategies, methods, and application. Eds: Gonzalez-Henriquez C. and Rodrigues-Hernandez J., 2019, Springer, 205-227. Abstract

 

​

 

34. Ji S., Dube K., Chesterman J.P., Fung S.L., Liaw C-Y., *Kohn J., *Guvendiren M., Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds, Biomaterials Science, 2019,7, 560-570. [Biomaterials Science Emerging Investigators 2019 Special Issue] (Highlighted as Back Cover) Abstract

 

​

 

_____________________________________________________________________________________________________

2018

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

33. Liaw C-Y., Shen J., *Guvendiren M., Engineering 3D hydrogels for personalized in vitro human tissue models, Advanced Healthcare Materials, 2018, 7(4):1701165. (Highlighted as back cover) Abstract

 

​

 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

32. Marklein R.A., Lam J., Guvendiren M., Sung K.E., Bauer S.R., Functionally-relevant morphological profiling: a tool to assess cellular heterogeneity, Trends in Biotechnology, 2018, 36(1):105-118. Abstract

 

​

 

 

_____________________________________________________________________________________________________

2017

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

31. Guvendiren M., Fung S., De Maria C., Montemurro F., Vozzi G., Kohn J., The control of stem cell morphology and differentiation using three-dimensional printed scaffold architecture, MRS Communications, 2017, 7(3):383-390. Abstract

 

​

 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

30. Liaw C-Y., *Guvendiren M., Current and emerging applications of 3D printing in medicine, Biofabrication, 2017, 9: 024102. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

29. Ji S., *Guvendiren M., Recent advances in bioink design for 3D bioprinting of tissues and organs, Frontiers in Bioengineering and Biotechnology, 2017, 5:23 (1-8). Article

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

28. Goyal R., Vega M., Pastino A., Singh S., Guvendiren M., Kohn, J., Murthy, N.S., Schwarzbauer, J.E., Development of hybrid scaffolds with natural extracellular matrix deposited within synthetic polymeric fibers, Journal of Biomedical Materials Research Part A, 2017, 105(8):2162-2170. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

27. Lampi M., Guvendiren M., Burdick J., Reinhart-King C., Photopatterned hydrogels to investigate endothelial cell response to matrix stiffness heterogeneity, ACS Biomaterials Science and Engineering, 2017, 3(11), 3007-3016. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

26. 1Goyal R., 1Guvendiren M., Freeman O., Mao Y., Kohn J., Optimization of polymer-ECM hybrid scaffolds for tissue engineering: Effect of cells and culture conditions on polymeric nanofiber mats, Journal of Functional Biomaterials, 2017, 8(1): 1-14. [1 Equal contribution] Article

 

​

 

 

_____________________________________________________________________________________________________

2016 - 2004

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

25. *Guvendiren M., Molde J., Soares R.M.D., Kohn J., Designing biomaterials for 3D printing, ACS Biomaterials Science and Engineering, 2016, 2(10):1679-1693. [Abstract]. [* Corresponding Author] Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

24. 1Groen N., 1Guvendiren M., Rabitz H., Welsh W.J., Kohn J., de Boer J., Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering, Acta Biomaterialia, 2016, 34:133-142. Abstract [1Equal Contribution] Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

23. 1Viswanathan P., 1Guvendiren M., Chua W., Telerman S.B., Liakath-Ali K., Burdick J.A., Watt F.M., Mimicking the topography of the epidermal-dermal interface with elastomer substrates, Integrative Biology, 2016, 8(1):21-29. Abstract [1Equal Contribution] Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

22. Guvendiren M., Reaction-diffusion dynamics induced surface instabilities, in Polymer Surfaces in Motion, Unconventional Patterning Methods, Eds: Rodrigues-Hernandez J, Drummond C., 2015, Springer. Book

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

21. Guvendiren M., Burdick J.A., Hydrogels with dynamically tunable properties, in Integrative Mechanobiology: Micro and Nano Techniques in Cell Mechanobiology, Eds: Sun Y, Kim DH, Simmons CA, 2015, Cambridge University Press. Book

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

20. Guvendiren M., Perepelyuk M., Wells R.G., Burdick J.A., Hydrogels with differential and patterned mechanics to study stiffness mediated myofibloblastic differentiation of hepatic stellate cells, Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38:198-208. Article

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

19. 1Bian L., 1Guvendiren M., Mauck R.L., Burdick J.A., Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis, Proceedings of the National Academy of Sciences (PNAS), 2013, 110:10117-10122. [1Equal Contribution] Article

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

18. Guvendiren M., and Burdick J.A., Engineering synthetic hydrogel microenvironments to instruct stem cells, Current Opinion in Biotechnology, 2013, 24:841-846. Article

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

17. Khetan S., Guvendiren M., Legant W.R., Cohen D.M., Chen C.S., Burdick J.A., Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels, Nature Materials, 2013, 12:458-465. Abstract / Article

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

16. Guvendiren M., and Burdick J.A., Stem cell response to spatially and temporally displayed reversible surface topography, Advanced Healthcare Materials, 2013, 2:155-164. Abstract (Highlighted as back cover)

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

15. Guvendiren M., and Burdick J.A., Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics, Nature Communications, 2012, 3:792. Article

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

14. Guvendiren M., Lu H., Burdick J.A., Shear thinning hydrogels for biomedical applications, Soft Matter, 2012, 8:260-272. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

13. Guvendiren M., Soshinski A.A., Gambogi R.J., Yang S., Calcium carbonate composite hydrogel films: particle packing and optical properties, Journal of Polymer Engineering and Science, 2012, 52(6):1317-1324. Article

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

12. Guvendiren M., Purcell B., Burdick J.A., Photopolymerizable systems, in Polymer Science: A Comprehensive Reference, Volume 9: Polymers in Biology and Medicine, Eds: Moeller M, Matyjaszewski K, 2012, Elsevier. Book

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

11. Guvendiren M., Burdick J.A., Yang S., Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients, Soft Matter, 2010, 6:5795-5801. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

10. Ramanan V., Katz J.S., Guvendiren M., Cohen E., Marklein R.A., Burdick J.A., Photocleavable side groups to spatially alter hydrogel properties and cellular interactions, Journal of Materials Chemistry, 2010, 20:8920-8926. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

9. Guvendiren M., and Burdick J.A., The control of stem cell morphology and differentiation by hydrogel surface wrinkles, Biomaterials, 2010, 31:6511-6518. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

8. Guvendiren M., Burdick J.A., Yang S., Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient, Soft Matter, 2010, 6(9):2044-2049. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

7. Guvendiren M., McSwain R.L., Mates T.E., Shull K.R., Welding kinetics in a miscible blend of high-Tg and low-Tg polymers, Macromolecules, 2010, 43:3392-3398. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

6. Guvendiren M., Yang S., Burdick J.A., Swelling induced surface patterns in hydrogels with gradient crosslinking density, Advanced Functional Materials, 2009, 19(19):3038-3045. Abstract (Highlighted as frontispiece)

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

5. Guvendiren M., Heiney P.A., Yang S., Precipitated calcium carbonate hybrid hydrogels: structural and mechanical properties, Macromolecules, 2009, 42(17):6606-6613. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

4. Guvendiren M.; Brass D., Messersmith P.B., Shull K.R., Adhesion of DOPA-functionalized model membranes to hard and soft surfaces, Journal of Adhesion, 2009, 85(9):631-645. Article

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

3. Guvendiren M., Messersmith P.B., Shull K.R. Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels, Biomacromolecules, 2008, 9(1):122-128. Article

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

2. Guvendiren M., and Shull K.R., Self-assembly of acrylic triblock hydrogels by vapor phase solvent exchange, Soft Matter, 2007, 3(5):619-626. Abstract

 

​

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1. Guvendiren M., Bayboru E., Ozturk T., Effects of additives on mechanical milling and hydrogenation of magnesium powders, International Journal of Hydrogen Energy, 2004, 29(5):491-496. Abstract

 

 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 

 

 All contents copyright Β© Murat Guvendiren. All rights reserved. (Last updated March 2024)